Assessment Schedule – 2011

Chemistry: Describe aspects of organic chemistry (90698)

Evidence Statement

Question	Evidence	Achievement	Merit	Excellence
ONE (a) (b)(i)	Compound A $h_3C-CH_2-CH_2-C \to O \to $	 TWO of One correct structural formula. Justification for a functional group for one compound. 	 TWO of Correct structural formulae for A to D. Justification for two functional groups. Correct structural formula and justification for 	Correct structural formula for compounds A to D that are linked to correct justifications. AND
	Compound C = aldehyde = butanal – with one –OH group coming off any C atom. $OH O CH_3C-H_2C-CH-C HO-CH_2-CH-C$		one compound.	
(ii)	Compound D = ester $P_{3}C-H_{2}C-C$ $O-CH_{3}$ Justification B : rapid decolourisation of bromine water indicates an alkene/double bond /unsaturated compound C : Reaction with $Cr_{2}O_{7}^{2-}/H^{+}$ indicates alcohol or aldehyde, but Fehlings indicates aldehyde. D : Hydrolysis of an ester can produce the alcohol and acid. As methanol forms, the ester must be methyl propanoate. (link presence of the methyl group in the ester to the formation of methanol). OH $H_{C}-C-CH-CH$ $H_{C}-C-CH-CH$	• Correct identification of	• Correct	Correct identification of
	$H_{3}O = O = OH_{2} = OH_{2}$	enantiomer. OR • Correct explanation.	enantiomer and correct explanation / asymmetric carbon causing non- superimposible compounds.	enantiomer and correct explanation.

TWO (a)	$ \begin{array}{c} O \\ H \\ -C-N- \\ H \\ H \\ One link is circled. \end{array} $	TWO ofAmide linkage is correctly circled in nylon structure.	THREE of	
(b)	One set of monomers (can be in any order) O = O = O = O = O = O = O = O = O = O =	• One monomer is drawn correctly.	• Both monomers correct.	• Both monomers correct.
(c)(i)	6-amino hexanoic acid	• Nylon (6) monomer correctly named.		
(ii)	$ \begin{array}{c} O & H & O & H \\ -C - (CH_2)_5 - N - C - (CH_2)_5 - N - C - (CH_2)_5 - N - H \\ & H \\ O & H \end{array} $	• Polymer chain for Nylon (6) correct.	• Polymer chain for Nylon (6) correct.	
(d)	The acid would hydrolyse the rope. This would cause the amide linkages to break and form the monomers. The rope would lose strength. $H_{3}^{+}N-(CH_{2})_{5}-C_{OH}^{0}$ OH OR products from nylon 6,6.	• Recognises that acid causes the rope to lose strength / break / hydrolyse.	 States that the reaction is hydrolysis and the rope will lose strength. Correct organic hydrolysis structure. (amine or salt) 	 Acidic hydrolysis of nylon is fully discussed. Includes: Organic structure given. Description of amide linkage breaking. (Either state amide link or description of the hydrolysis and amide correct in (a).) Strength / tensile strength decreases.

THREE (a) (b)(i)	A = fluoroethanoic acid (2 fluoroethanoic acid) B = propanoyl chloride C = 1-bromobutane D = hexan-2-one	TWO of • Any three structures are correctly named.	TWO of	• Correct equations are written for the formation of an amide and an
(ii)	$H_{3}C-CH_{2}-CH_{2}-CH_{2}+NH_{3} \rightarrow H_{3}C-CH_{2}-CH_{2}+HCI$ NH_{2} not (aq) or reaction with amine (no aq or alc) $H_{3}C-CH_{2}-CH_{2}-CH_{2}-Br + NH_{3} \rightarrow H_{3}C-CH_{2}-CH_{2}-CH_{2}-NH_{2} + HBr$	 One equation is correctly written for the formation of an amide or an amine. (Organic product only acceptable.) (Word eqn.) 	 Correct equations are written for the formation of an amide AND an amine. (Organic product only acceptable.) (Word eqn.) 	amide and an amine. AND
(iii) (c)(i)	Damp red litmus will turn blue in the presence of the amine but no change with the amide (or clearly indicate solution / add water / aqueous). OR Universal indicator. OR Add Cu ²⁺ (aq) the amine will form a deep blue solution and no reaction with the amide. D	 Correct laboratory procedure to distinguish amine / amide provided. (ONE outcome.) Correct apparatus identified. 	 Correct laboratory procedure to distinguish amine / amide provided and the different outcomes identified. 	 Correct laboratory procedure to distinguish amine / amide provided and the different outcomes identified. AND Correct apparatus identified and recognises that refluxing prevents loss of reactants or products. AND Increases the rate of reaction without losing reactants or products / recognise need for heat.
(ii)	Refluxing allows the solution to be heated, which increases the rate of the chemical reaction. The reflux apparatus prevents the loss of volatile organic reactants or products.		 Correct apparatus identified and recognises that refluxing prevents loss of products or reactants. OR Correct apparatus identified and recognises that refluxing increases rate of reaction / recognise need for heat (Eg going to completion with example.) 	

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
3 A	3 M	3 E
OR		OR
2 M		2 E + 2 M